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Ruthenium-catalyzed substitutions of carbon pronucleophiles, various [2+2+2] cycloadditions, and addi-
tion of a diazo compound to an alkyne are shown to proceed in the presence of air. Notably diverse cat-
alytic manifolds remain supported under conditions generally regarded as prohibitive. Building on rare
reports from the literature we show that a range of organometallic transformations based on reaction
intermediates derived from (C5Me5)Ru or (C5H5)Ru moieties are air-compatible.

� 2009 Elsevier Ltd. All rights reserved.
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Scheme 1. Alkene–alkyne couplings in air.6 The yields in parentheses are literature
yields5c,e for reactions run with exclusion of air. Cp* = pentamethylcyclopentadie-
nyl, Cp = cyclopentadienyl, cod = 1,5-cyclooctadiene.
Ruthenium organometallic catalysis has emerged as an impor-
tant method for forming various types of bonds in organic synthe-
sis.1 The majority of these reactions, and indeed the majority of all
reactions involving organometallic catalysis, are described under
the strict exclusion of air. In this context, the search for oxygen-tol-
erant reactions catalyzed by organometallics has emerged as a new
challenge at the forefront of synthetic chemistry.2 Although, air-
tolerant ruthenium-catalyzed carbon-heteroatom bond formations
are known,3 C-C bond formation catalyzed by molecular ruthenium
complexes in the presence of dioxygen has, until very recently, re-
mained generally unrecognized.4

Trost’s ruthenium-catalyzed alkene-alkyne coupling was one of
the first examples of an air-tolerant C–C bond formation via ruthe-
nium organometallic catalysis.4a In spite of the fact that the
authors point to the oxygen tolerance of their benchmark Alder-
ene-type transformations, such reactions are invariably run under
an inert atmosphere.1e,5 As there was no yield reported for the
open-flask set-up, we decided to test the efficiency of this simpli-
fied procedure. Interestingly, the yields of two representative al-
kene-alkyne couplings performed in the presence of air with no
effort taken to exclude moisture compared very well with the re-
sults obtained using traditional air-free conditions (Scheme 1).5c,5e

Based on this initial study we speculated that other reactions
proceeding via ruthenacyclic intermediates might be air tolerant.
Furthermore, catalytic manifolds involving ruthenacyclic interme-
diates1e,7 offer a varied set of known C–C bond forming reactions as
a testing ground for our investigation of air-compatibility.

Recently, Fokin and co-workers reported that ruthenium-cata-
lyzed azide-alkyne cycloaddition (RuAAC)3b is considerably air tol-
ll rights reserved.
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erant. Although RuAAC8 is not a C–C bond forming process, a
putative mechanistic analogy3b,8a between RuAAC and ruthe-
nium-catalyzed [2+2+2] cycloadditions9 led us to investigate the
feasibility of a model [2+2+2] cycloaddition10 under aerobic
conditions.

Initially, we attempted a [2+2+2] intermolecular cycloaddition
of dimethyl acetylenedicarboxylate (9) using catalyst 1 (1 mol%)
in reagent grade 1,2-dichloroethane (DCE) under an atmosphere
of air (Scheme 2). The starting material was consumed within 1 h
and hexamethylmellitate (10) was isolated in 85% yield (cf. 88%
yield of 10 under anhydrous conditions and an atmosphere of
argon9a).

A series of [2+2+2] cycloadditions leading to benzene deriva-
tives 12,9a 15,9a 17,9a 189c and 20,9d (Schemes 2 and 3) and
pyridines 229e and 239e (Scheme 4), also exhibited excellent toler-
ance to air as was evident by comparison with results previously
obtained with exclusion of air.9 This is in line with the working
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Scheme 2. [2+2+2] Cycloadditions of alkynes in air.6 The yields in parentheses are
literature yields9a for reactions run in anhydrous solvents with exclusion of air.
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Table 1
Air-tolerant allylation of carbon pronucleophile 27a

27 28

EtO2C

EtO2C

OCO2Me

catalyst 5 mol%
NMP, air, 90 ºC, 5h

Ph

EtO2C

EtO2CPh

Entry Catalyst Yield (%)b

1 1 72
2 [Cp*RuCl(PPh3)2] 98c

3 [CpRuCl(PPh3)2] 96
4 [Cp*Ru(MeCN)3]PF6 96c

5 [CpRu(MeCN)3]PF6 89
6 [Cp*RuCl]4 82
7 [Cp*RuCl2]n 68
8 [(C9H7)RuCl(PPh3)2] 13d,e

9 [(PPh3)4RuH2] 0f,g

10 [Ru(cod)(g6-C8H10)] 0h,i

a Reaction conditions: 27 (0.3 mmol), allyl methyl carbonate (0.6 mmol), catalyst
(0.015 mmol), NMP (1 mL), sealed tube, 90 �C, 5 h.

b Yield of isolated product (average of two runs).
c Isolated yield after 1 h.
d 24 h.
e 27% yield of 28 under argon, 24 h.
f 8 h.
g 25% yield of 28 under argon, 8 h.
h 24 h.
i 26% yield of 28 under argon, 24 h. C9H7 = indenyl, C8H10 = 1,3,5-cyclooctatriene.
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hypothesis that ruthenacyclic intermediates derived from a Cp*Ru
fragment are endowed with significant air-stability throughout the
reaction pathway.11

Recently, Streu and Meggers reported that the catalyst [Cp*Ru
(cod)Cl] (1) displayed excellent catalytic properties in the depro-
tection of amines from the corresponding allylcarbamates leading
to S-allylation under open-flask conditions, and notably, even in
living mammalian cells.3a

Our previous results indicated that it might be possible to ex-
tend this process to a straightforward open-flask C–C bond forming
allylation protocol.12 To this end, we investigated a known C-ally-
lation reaction based on catalyst 1 developed by Yamamoto et al.13

24 25

MeO2C

MeO2C

OCO2Me

1 10 mol%

MeO2C

MeO2C

MeO2C

MeO2C

79% 26 0%
NMP, air
90 °C, 15 h

ð1Þ
Indeed, when no precaution was taken to exclude air, the reac-
tion of dimethyl malonate 24 with allyl methyl carbonate (3 equiv)
catalyzed by 1 (10 mol %) in reagent grade N-methylpiperidine
(NMP) at 90 �C was found to proceed smoothly (Eq. 1).6 Thus, after
15 h, the starting material was consumed and diallylated malonate
25 was isolated as a single product in 79% yield (cf. 83% yield under
anhydrous conditions and an argon atmosphere13).

We next decided to examine the catalytic activity of several
ruthenium complexes in the reaction of malonate 27 with allyl
methyl carbonate in the presence of air (Table 1). Among the cata-
lysts investigated, Ru(II) and Ru(III) catalysts with the ligands
Cp* or Cp generally performed well (68–98% yields, entries 1–7).
Conversely, [(PPh3)4RuH2] and [Ru(cod)(g6-C8H10)] which are re-
ported to catalyze the allylation of pronucleophiles with allyl car-
bonates in basic media,12c,d failed to effect the desired reaction in
the presence of air (entries 9 and 10).

Recently, Wang and Tunge developed a regioselective base-
free decarboxylative insertion of electrophiles catalyzed by
[Cp*Ru(bipyridyl)Cl] generated in situ from [Cp*RuCl]4 and 2,20-
bipyridyl.14 We found that this transformation (Eq. 2) also tolerates
air, giving the insertion product 31 in a respectable 65% yield, al-
beit after a prolonged five-day reaction time6 (cf. 84% yield of 31
after 2 h under anhydrous conditions with exclusion of air14).

29 31

[Cp*RuCl]4 2.5 mol%

CH2Cl2, air, r.t., 5 d

O

O

O Ph

CN

CN

O Ph

CN
CN

65%

2,2´-bipyridyl 10 mol%

30

ð2Þ

Next we turned to a reaction believed to take place via a car-
bene mechanism, as originally described by Dixneuf and co-work-
ers.15 We aimed to test an additional and considerably distinct
group of Cp*Ru catalytic species for oxygen-tolerance. It was found,
that the synthesis of diene derivative 34 by reaction of but-2-yn-1-
ol (32) and (trimethylsilyl)diazomethane (33) catalyzed by 1 (Eq.
3), proceeded well under aerobic conditions6 (82% yield of 34, cf.
95% yield of 34 under anhydrous conditions with exclusion of
air15).
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We then focused on C–C bond forming air-tolerant ruthenium
catalysis devoid of Cp* and Cp ligands. It has been shown by the
groups of Murahashi et al.16a and Echavarren and co-workers16b that
carbon pronucleophiles can be activated at room temperature by
[(PPh3)4RuH2] in MeCN. We observed that the Michael-type addition
leading to substituted malonate 36 was compatible with the
straightforward set-up of an open-flask experiment6 (Eq. 4, 91%
yield of 36, cf. 96% yield of 36 under anhydrous conditions with
exclusion of air16b). This transformation is postulated to proceed
via a Ru(0) species,16 and therefore the air-compatibility came rather
unexpectedly as both [(PPh3)4RuH2] and the Ru(0) catalyst [Ru(-
cod)(g6-C8H10)] failed in our allylation study (Table 1, entries 9 and
10).

36

MeO2C

MeO2C

O

[(PPh3)4RuH2] 3 mol%
MeCN, air, r.t., 10 h

MeO2C

MeO2C

91%

O
1.2 eq

35

ð4Þ

In summary, drawing inspiration from mechanistic analogies
we found that air tolerance of transformations catalyzed by ruthe-
nium organometallics is not restricted to the rare appearances in
the literature. Notably diverse catalytic manifolds, mainly those
involving Cp*Ru and CpRu fragments, remain supported under con-
ditions generally regarded as prohibitive. Indeed, we recently took
advantage of this air tolerance for the synthesis of the novel heli-
cene-viologen hybrid (helquat).17 Our study indicates that catalytic
pathways based on Cp*Ru-derived species are potentially good
candidates for the unveiling of robust, air-tolerant processes which
will be of practical interest for organic chemistry.
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vená and Mr. M. Hrebíček for their experimental help in the initial
phase of this project, the group of Dr. J. Cvačka for mass spectra,
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